问题 1759 --算法6-8~6-11:用树表示的等价问题

1759: 算法6-8~6-11:用树表示的等价问题

时间限制: 1 Sec  内存限制: 32 MB
提交: 2  解决: 2
[提交][状态][讨论版][命题人:]

题目描述

在离散数学中,对等价关系和等价类的定义是:
如果集合S中的关系R是自反的、对称的和传递的,则称它为一个等价关系。
等价关系是现实世界中广泛存在的一种关系,许多应用问题可以归结至等价类问题,这类问题通常被称为等价问题。
通过使用集合,能够解决等价问题。而集合可以通过双亲表示法的树结构进行保存。通过对树结构的操作,可以实现查找、归并等操作。查找操作和归并操作的算法如下:
在以上的归并操作中,由于表示集合的树的深度与树形成的过程有关,因此在最坏情况下全部归并操作将会有O(n2)的复杂度。而通过在归并时比较子集所含成员的数目,令成员少的归并至成员多的集合,将能够提高算法的效率。下面给出优化的归并操作算法:
另外,通过增加“压缩路径”的功能,即将所有从根到相应元素路径上的元素都变成树根的孩子。算法如下所示:
本题中,将会给出n个原本互不相交的集合及k次集合合并的操作。通过这k次合并,判断最终的某两个原始的集合是否被合并成了同一个集合。

输入

输入的第一行包含两个用空格隔开的正整数n和k,其中n不超过100,k不超过n-1。
之后的k行中,每行包含两个用空格隔开的正整数x和y,表示将x元素所在的集合和y元素所在的集合合并至同一个集合。保证x和y均在1至n之间。
最后一行中,包含两个正整数,表示需要判断是否在同一个集合的元素编号。

输出

共一行,包含字符串“YES”或“NO”,“YES”表示需判断的元素在同一个集合中,“NO”表示不在同一个集合中。请注意不需要输出引号,且行尾输出换行。

样例输入

5 2
1 3
2 3
1 2

样例输出

YES

提示

以集合为基础结构的抽象数据类型可以有多种实现方法,比如用位向量表示集合或者用有序表表示集合等等。而如何高效的实现以集合为基础的抽象数据类型,取决于该集合的大小以及对此集合所进行的操作。

在本题中实现的MFSet抽象数据结构,又被称为并查集,是一种能够非常高效的实现集合的合并、查询等操作的数据结构。

来源

[提交][状态]